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Asymptotic Behavior for the Liouville Equations
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A new proof of the diffusion approximation for ordinary differential equations
is given. It is based on an asymptotic expansion of the solution of the corre-
sponding Liouville partial differential equations. In contrast to previous results
obtained for the suspension under Holderian mappings of subshift of finite type
or Fourier analysis techniques, our proof relies only on symbolic dynamics.

KEY WORDS: Diffusion process; geodesic flow; continued fractions; expand-
ing maps.

1. INTRODUCTION

The subject of this paper is to study the behaviour of the solution of the
Liouville equations. We give a new proof for the diffusion equation using
vector fields which are more singular than those considered in the original
proof.(4) Our motivation is twofold. First, we shall discuss a class of
problems which is not more general, but rather disjoint from the one con-
sidered by Arnold, (2) Bardos et al.(4) Secondly, we will obtain the diffusion
equation as the limit of the reversible kinetic equation scaled appropriately.
Actually, ref. 4 deals with a result on reversible models of transport equa-
tions. A diffusion obtained through a convenient scaling from a reversible
kinetic equation is produced by the collisions of the particles with the
boundary, parametrized by T2=R2�(2?Z)2. These particles are assumed to
reflect according reversibility law which induces convenient mixing proper-
ties (see also ref. 7). Optimal convergence results are simply obtained and
this is made possible because the model, using the transformation T of
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hyperbolic automorphism of the torus��Arnold's cat map��can be handled
with Fourier decomposition instead of coding with Markov Partition.

Here we place our result in another context. We do not assume that
the domain is a torus, but instead that is a Riemann surface. In fact, we
consider a class of mixing flows whose autocorrelation functions decay suf-
ficiently fast, or alternately, we consider the class of transitive Anosov flows
on a Riemann surface M. We deal with a system of ordinary differential
equations (ODEs) of the form

�t X==f (Y ), �t Y=|(Y ) (1.1)

where the variable X belongs to Rn and Y to the non-compact n-dimen-
sional manifold M. The variable X plays the role of a ``slow'' variable
and Y the ``fast'' one. The maps |, f : M � Rn are given vector fields; we
assume that | is independent of the slow variables (|=|(Y )), and we
strengthen the uniform distribution hypothesis from ergodicity to mixing.
Here =�0 is an infinitesimal parameter. The Liouville partial differential
equations (PDEs) corresponding to Eqs. (1.1) are

�t F==f ( y) } �xF+|( y) } �yF, F#F=(t, x, y) F | t=0=h(x) (1.2)

The solution of Eq. (1.2) is given by the formula:

F(t, x, y)=F(Xt(x, y)) (1.3)

Using the formula (1.3), and functional analysis we get quantitative infor-
mations from Eqs. (1.1). The interest to study the Liouville equation of a
vector fields to obtain the information on its trajectory flow arises from the
fact that the weak convergence of the solution of Liouville equations
implies the convergence of the flow of the associated system almost
everywhere.

The difference between ref. 4 and our approach is that here we place
ourselves on M=H�SL(2, Z), the Riemann surface with constant cur-
vature, which is non-compact but with finite volume and preserved Gauss
measure. The Arnold's cat map is replaced by the geodesic flow coded by
the transformation of continued fractions. Therefore we use elementary
results from number theory about continued fractions. We discuss the
approach for Perron�Frobenius or the transfer operator method for sub-
shifts of finite type. The main step for applying the transfer operator
method in this case is Arnoux(3) and Series' construction (14) of symbolic
dynamics for these flows, reducing this method to the dynamics to special
flows over ``analytic expanding maps'' of the unit interval. For the modular
surface this map is just Gauss'continued fraction transformation. Another
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difference between ref. 4 and our approach is that, for proving decorrela-
tion property, ref. 4 uses Fourier analysis, while we need to connect the
geodesic flow to the special associated flow. An essential point in our paper
is that we have not assumed the suspension g of the special flow to be
bounded, but only to belong to the space L1. A closely related result
proved under less restrictive hypotheses may be found in ref. 13.

2. SETUP AND STATEMENT OF RESULT

Let M be a smooth non-compact manifold of dimension n, equipped
with a smooth density |dY | normalized to satisfy the relation �M |dY |=1.
For a small =�0, we consider the system of ODEs on Rn_M given by

dX
dt

==f (Y ) (2.1)

and

dY
dt

=|(Y ) (2.2)

which are associated to the perturbation (=f, |) of the vector field (0, |).
Here, X and Y denote any elements of Rn and M, respectively. We shall
impose the following assumptions:

(H1) f # C1(M) and | # C1(M);

(H2) the density |dY | is invariant under the flow generated by |.

By the standard ODE theory, it is well-known that, under hypotheses (H1)
and (H2), the Eqs. (2.1)�(2.2) generate global flows which leave the respec-
tive domains DR#B� R_M and B� R invariant (here B� R denotes the closed
ball of radius R, centered on the origin in Rn). We shall denote these flows
by

(X =
t , Yt)#(X =

t , Yt)(x, y) (2.3)

where

X =
t(x, y)=x+= |

t

0
f (Ys( y)) ds (2.4)

The notation here means that, t [ (X =
t , Yt)#(X =

t , Yt)(x, y) is the integral
curve of the vector field (=f, |) passing through the initial condition (x, y)
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at the time t=0. Furthermore, It is worth to point out that the unperturbed
flow is consistently denoted (X 0

t , Yt). The Liouville equation corresponding
to Eqs. (2.1)�(2.2) is then given by

�t .==f ( y) } �x .+|( y) } �y., t # R+, x # Rn, y # M (2.5)

with the initial condition

.(0, x)=,(x), x # Rn (2.6)

If a small parameter =>0 is introduced so that t is changed into t�=. Then
problem of interest becomes

=2 �t.== =f ( y) } �x.=+|( y) } �y.= , t # R+, x # Rn, y # M (2.7)

.=#.=(t, x, y) .= | t=0=,(x), t # R+, x # Rn, y # M (2.8)

Now, integrating these equations by the characteristic method, we get:

.=#.=(t, x, y)=,(Xt�=2(x, y))=, \x+= |
t�=2

0
f (Ys( y)) ds++O(=) (2.9)

Therefore, most of the analysis is reduced to studying the limit, as = � 0,
of the expression

�=(t, x, y)=, \x+= |
t�=2

0
f (Ys( y)) ds+ (2.10)

It will be convenient to introduce the following notation: let r and s # N*=
N&[0]; if A and B are two vectors in Rr and Rs respectively, define the
r_s matrix A�B :=At } B, and denote by A �2 the r_r symmetric matrix
A�A. Let M and N be two r_s matrices and define the real number
M : N=N : M=�i, j Mi, j Ni, j . It is an inner product on Mn . With these
notation, if X is a r_s matrix, A and B in Rr, one has

X : A�B=:
i, j

Xi, j Ai Bj =
t(XB) A=(A, XB)

In what follows, the notation ( } ) stands for (F ) =�M F(Y ) |dY |.
The main result of this paper can now be stated as follows:

Theorem 2.1. Let f : M � Rn be in the class C3(M) with mean
value ( f ) =0 and , # C �

0 (Rn) be an initial data. Then, there exists a
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positive matrix, denoted }2, limit of the sequence of matrices (( ((1�- T )_
�T

0 f (Ys) ds) �2) )T�1 such that, if u(t, x) # C1, 2(R+_Rn) denotes the
unique solution of the heat equation

�t u={x } (}2 {xu); u(0, x)=,(x) (2.11)

the function .= defined by Eq. (2.9), converges to u(t, x) as = � 0 in the
following sense: for any {>0 and any compact K/Rn

x

(.=(t, x, y)) w� u(t, x), C0([0, {]_K_M);

.=(t, x, y) w� u(t, x), C0([0, {], w*&L�(R+_Rn_M))

Furthermore, with �=(t, x, y) defined by Eq. (2.10) we have:

&.=&�=&L�(R+_Rn_M)=O(=) (2.12)

2.1. Approximation by Diffusion. Principle of the Proof

The proof of our theorem is inspired by the proof of the Itô formula
for Brownian motions (cf. for instance ref. 5). Since , # C3

b , the starting
point is the Taylor's formula with ``remainder'' at the order two for the
increment:

(�=(t+{, x, } ))&(�=(t, x, } ))

=�{x , \x+= |
t�=2

0
f (Ys( y)) ds+ } = |

(t+{)�=2

t�=2
f (Ys( y)) ds�

+ 1
2 �{2

x, \x+= |
t�=2

0
f (Ys( y)) ds+ : \= |

(t+{)�=2

t�=2
f (Ys( y)+ ds+

�2

�
+O \�} \= |

(t+{)�=2

t�=2
f (Ys( y)+ ds+ }

3

�+ (2.13)

for all {>0.
The analysis of the limit of Eq. (2.13) as = � 0 in the above expression

will be done in four steps under some hypotheses:

v First prove that

}�{2
x, \x+= |

t�=2

0
f (Ys( y)) ds+ : \= |

(t+{)�=2

t�=2
f (Ys( y)) ds+

�2

�
&�{2

x , \x+= |
t�=2

0
f (Ys( y)) ds+� : �\= |

(t+{)�=2

t�=2
f (Ys( y)) ds+

�2

� }=o({)

(2.14)

877Asymptotic Behavior for the Liouville Equations



when = � 0 for 0<t<t+{. By the definition of .= ,

�{2
x, \x+= |

t�=2

0
f (Ys( y)) ds+�={2

x(.=(t, x, } )) (2.15)

v Secondly prove that the remainder

O \} \= |
(t+{)�=2

t�=2
f (Ys( y)) ds+ }

3

+=o({), as = � 0 (2.16)

v Thirdly show that the family

�\= |
t�=2

0
f (Ys( y)) ds+

�2

� w� }2, as = � 0 (2.17)

where }2 is the diffusion coefficient.

v Finally, under Eqs. (2.14)�(2.16)�(2.17) letting = � 0 in Eq. (2.13),
get

(�=(t+{, x, } ))&(�=(t, x, } ))= 1
2 {}2: {2

xu(t, x)+O({)1�2 (2.18)

Now, there are many ways to proceed:

v We can apply the result of M. Ratner, (15) or Dumas�Golse, (8)

assuming that Yt is an ergodic Anosov flow on M with invariant con-
tinuous measure, and to show that it satisfies the Central Limit Theorem.

v We can use probabilistic method, the invariance principle of Donsker
(Tightness).

v Our proof relies entirely on functional analysis, using a priori
estimates of ODEs and symbolic dynamics, while other authors methods
depend on probabilistic methods. The essential point of the proof is based
on the decorrelation of two intervals of time, uniformly with respect to
their size, under the hypothesis only that their distance is large enough; we
prove that the average of the different products which appear in the Taylor
formula are, in the limit completely decorrelated and therefore converge to
the product of the corresponding limiting averages. In the original Itô
formula, this point is straightforward, because the Brownian motion is
by hypothesis a process with independent increments. By contrast in the
present paper, the independence can only be obtained in the limit as = � 0
and, as will be shown below, it is a consequence of the different mixing
properties inherited from the mapping Yt . In the ref. 4, these properties has
being obtained by using elementary techniques for Fourier series expan-
sion. Here, we are in the case where the flow Yt viewed as a geodesic flow
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on non-compact but with finite volume Riemann surface, is coded by con-
tinued fractions. Therefore to have mixing properties, the Perron-Frobenuis
operator (or as we prefer to call it the transfer operator) appears naturally
in connection with the subshifts of finite type.

The outline of the paper is as follows: Section 3 deals with symbolic
dynamics. We connect the flow Yt with the continued fractions. We give
the relationship between the flow Yt and the special flow associated. In
Section 4 we prove the decorrelation property and the main theorem is
established. The spectral properties of the Perron�Frobenius operator is
presented in the Appendix.

3. SYMBOLIC DYNAMICS

Following an idea of Arnoux(3) or Series, (14) which has the advantage
of being simple and more easily to adapt to our problem, we switch to the
symbolic setting.

3.1. On Coding of the Flow Yt with Continued Fractions

We shall be interested in the hyperbolic geometry model M=H�1,
where H denotes the Poincare� upper half plane defined by [x+iy : y>0]
with the metric and ds2=(dx2+dy2)�y2, and 1=SL(2, Z) (the 2_2
matrices with integer coefficients having determinant 1). Geodesics are arcs
of a semicircle centered on the real axis R=[z # C : Im z=0] or a part of
a vertical line perpendicular to R. The full modular group SL(2, Z) acts
on H by isometries of H that is mapping (( a

c
b
d ) } z) [ (az+b)�(cz+d ).

H�SL(2, Z) is a Riemann surface with constant curvature &1; it is non-
compact but has finite volume. Geodesics on this surface are projections of
geodesics in the universal cover H�SL(2, Z) of H�SL(2, Z) and the geodesic
flow is a flow on the unit tangent bundle.

In order to set up symbolic dynamics for the geodesic on the modular
surface M we need to investigate the connection between the dynamics of
Yt on M=H�SL(2, Z) and the continued fraction transformation. This
connection can be observed in the following manner: any real number
x # ]0, 1[ can be expanded as the form:

x=
1

a1+
1

a2+
1

a3+ } } }

=[0; a1 , a2 ,..., an ,...], (ak>0, \k�1) (3.1)
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In the particular case, when the sequence (ak) is periodic, denote

[0; a1 , a2 ,..., an ]=[0; a1 ,..., an , a1 ,..., an , a1 ,...]

An immediate computation shows that a1=[1�x], where [ y] means the
largest integer n� y; if we put x1=[1�x] where [t ]=t&[t] fractional
part of t, we have a2=[1�x1].

More generally, define the following mappings

g: ]0, 1[ w� N s.t. g: x w� _ 1
x&

T : [0, 1[ w� [0, 1[ s.t. T : x w� {1
x= if x{0, and T (0)=0

We verify at once that an= g(T n&1(x)), which is well-defined whenever
T n&1(x){0.

The transformation T is called the continued fraction transformation.
It admits a geometric extension T� defined on a subset of R2, in which a
way that if ? denotes the projection on the first variable, ?(T� (x, y))=
T (x), which is defined on the subset 7 of the plane of equations 0�x<1
and 0� y<1�(x+1) if x<1�2, 0< y<1�(x+1) otherwise and is given by

T� : 7 � 7

T� : (x, y) [ \{1
x = , x&x2y+ if x{0,

(0, x) [ (0, 0)

This map is one-to-one except at the points (0, y) which have the same
image and the points (x, 0) which have an empty preimage if x{0. The
map T� sends vertical segments to vertical segments and is discontinuous on
the set x=1�n, n # N, but continuous on the curve lying in the rectangle
which bound it. This map can be represented in the following manner: let
g~ be the number of rectangles which contain the point (x, y) defined by

g~ : 7 � N; (x, y) [ _ 1
x& if x{0

Put

7$=7>\[(0, 0)] _ .
k>0

T� &k(0, 0) _ .
k�0

T� k(x, 0)+
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Let N*Z denote the set of all sequences (an)n # Z with entries in N, having
``compact support,'' i.e., [n # Z | an{0] is finite. There exists a map

h: 7$ w�
t

N*Z

(x, y) @w� (g~ (T� n&1(x, y)))n # Z

such that

, b h=h b T�

where , is the shift operator defined in (3.2) below. This formula proves
that the coding map which to the point (x, y) associate (an)n # Z conjugates
T� to the shift operator , on N*Z.

3.2. Relation Between the Geodesic Flow Yt and the
Associated Special Flow St

Let O be the space of doubly infinite sequences of positive integers. We
first introduce the suspension of O� by g, defined as the quotient space

O� =[(z, s) # O_R+ | 0�s� g(z)]�t

where the equivalence t is defined by (z, g(z))t(,z, 0), and , is the shift
operator on O defined by (,z) i=zi&1 for all i # Z. Moreover g is a positive
continuous function defined on O. This allows us to construct the ``special
flow'' St : The special flow over O with the first return map T and the
recurrence time g, is the flow St defined for t<infz # O g(z) by

St(z, s)=(z, s+t), if s+t<g(z),

St(z, s)=(,z, s+t& g(z)), if s+t�g(z)

Let + denotes a ,-invariant probability measure on O such that d&=
(d+(z)_ds)�g� where g� =�O g(z) d+(s), according to the following scheme

/: M � O�

Yt [ St

+ [ &~ =d&(z) ds

The relation connecting the flow Yt to its special flow St is given by

St(z, s)=\T nz, _+s& :
n&1

r=0

g(T rz)+ (3.2)
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where n satisfies

:
n&1

r=0

g(T rz)�_+s< :
n

r=0

g(T rz) (3.3)

The map which sends (z, y) to the sequence (an)n # Z , where (an) is
the coding of (x, y) defined in the previous paragraph, conjugate the
geodesic flow to a special flow St over N*Z_[0, 1] with the return time
&2 ln[0; a1 , a2 ,..., an ,...]. The first return map of the special flow St is a
two-fold covering of the shift.

3.3. Perron�Frobenius Operator

For the transformation T : I � I defined by

Tx={1�x
0

mod.1 x{0
x=0

where I=[0, 1], direct computation yields T k[a1 , a2 ,...]=[ak+1 ,...], for
k=0, 1, 2,..., and ak=[(T k&1x)&1]. Therefore, the distribution of the
entries ak in the continued fraction expansion of x is closely related to the
ergodic properties of the dynamical system T. Obviously, the Gauss map
T is an analytic expanding Markov map; that is, there exists a countable
partition A=[Ii ]i # F of I (where F is a countable indexing set) into non-
trivial intervals Ii=[t i&1 , ti] such that:

(i) I=�i # F I i ;

(ii) int Ii & int Ij=<, if i{ j ;
(iii) Ti :=T | Ii

is monotone and of class Ck for some k�1;

(iv) |(T n)$ (x)|�$>1 for some n�1 and all x # I.

Now, for the partition A=[In]n # N with In=[1�(n+1), 1�n], we find
out that T |In

(x)=Tn(x)=(1�x)&n is analytic in x{0, and |(T 2)$ (x)|
�4>1 for all x # I. Furthermore we get for all n # N: TIn=I, so 1TIn

#1
for all n # N. The inverse maps have the explicit form

�i=T &1
i : I � Ii �i (x)=

1
x+i

and hence are meromorphic in the entire z-plane with a simple pole at
z=&i.

Since TSA=[0, 1] and hence TSP=SP if SP=[0, 1], the partition P

is the trivial partition P=[I ]. We introduce now the following notation:
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E�(D) denotes the Banach space of holomorphic functions over the disk
D=[z # C : |z&1|<3�2], and E1, �(D) is the Banach space of holomorphic
functions over the disk D, which together with their first derivatives are
continuous on D� , together with the sup norm & f &=max[supz # D� | f (z)|,
supz # D� | f $(z)|]. Therefore

Definition 3.1. We call the operator L (s)
; on E�(D) defined by

L(s)
; f (z)= :

�

i=1

(&1)s _ 1
z+i&

2;+2s

f \ 1
z+i+ s # [0, 1] (3.4)

the generalized Perron�Frobenius (P-F in short) operator.

In our context we need to investigate the operator L(0)
; . This operator

becomes a nuclear operator when restricted to the Banach space E�(D).
The transfer operator L (0)

; is a bounded linear operator on this space and
it is straightforward to extend the above properties of L (0)

; from E�(D) to
the space E1, �(D). In the fact L (0)

; can be decomposed as L (0)
; =P;+N; ,

where P; is the projector onto the eigenfunction h;(z)=1�(z+1) log 2
corresponding to the eigenvalue *1(;). Its explicit form is given as
P; f (z)=h;(z) �1

0 f (x) dx. N; is some bounded linear operator with
P;N;=L (0)

; =0 and having spectral radius strictly smaller than *1(;).
From the spectral properties of the operator L (0)

; in the space E�(D),
we have:

Lemma 3.2. The operator L (0)
; : E�(D) � E�(D) has a positive

leading eigenvalue *1(;), which is simple and strictly larger than all other
eigenvalues in absolute value.

For the reader's convenience, we give a proof of Lemma 3.2 in the
Appendix. The proof is based on positivity properties of the operator L (0)

; .
Before proving our main result, let us recall Kuzmin's Theorem, which

is the cornerstone of the proof of Theorem 2.1. We refer the reader to
ref. 11 for the proof.

Corollary 3.3. If L (0)
; is the P-F operator for the Gauss map in

the space E�(D), then

&*1(;)&n L (0) n
; &P;&�qn

; (3.5)

where qn
;=|*2(;)�*1(;)|<1, *2(;) the second highest eigenvalue of L (0)

; in
absolute value, and & }& the norm associated with the canonical scalar
product on E�(D).
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4. PROOF OF THE MAIN RESULT

The proof of Theorem 2.1 will be done in four steps as mentioned
before.

Step 1. Decorrelation Property. As already mentioned in the
introduction, to prove the approximation by diffusion we shall use the
property analogous to the ``very weak-Bernoulli'' property. First we refer to
the above section to reformulate the decorrelation property (2.14). Now

�{2
x , \x+= |

t�=2

0
f (Ys) ds+ : \= |

(t+{)�=2

t�=2
f (Ys) ds+

�2

�
=|

O� _{2
x, \x+= |

t�=2

0
f b /&1(Ss(z, _)) ds+ :

\= |
(t+{)�=2

t�=2
f b /&1(Ss(z, _)) ds+

�2

& d&~ (z, _) (4.1)

where the map / is defined in Paragraph 3.2.
Set

R(x)={2
x,(x+ } ), L(z)=z�2 (4.2)

We then easily see that Eq. (4.1) can be transformed into

|
O� _{2

x, \x+= |
t�=2

0
f b /&1(Ss(z, _)) ds+ :

\= |
(t+{)�=2

t�=2
f b /&1(Ss(z, _)) ds+

�2

& d&~ (z, _)

=|
O _|

g(z)

0
R \= |

t�=2

0
f� (Ss(z, _)) ds+

_L \= |
(t+{)�=2

t�=2
f� (Ss(z, _)) ds+ d_& d&(z) (4.3)

Next, decompose the interval [0, t] in the form:

[0, t]=[0, g(z)&_] _ [ g(z)&_, g(Tz)+ g(z)&_]

_ [ g(Tz)+ g(z)&_, g(T 2z)+ g(Tz)+ g(z)&_]

_ } } } _ [&_+ g(z) } } } g(T k&1z), t] (4.4)
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Under this decomposition, the integral �t
0 f� (Ss(z, _)) ds in expansion of the

transformation T reads as:

|
t

0
f� (Ss(z, _)) ds

=|
g(z)&_

0
f� (z, _+s) ds+|

g(Tz)+ g(z)&_

g(z)&_
f� (Tz, _+s& g(z)) ds

+|
g(T 2z)+ g(Tz)+ g(z)&_

g(Tz)+ g(z)&_
f� (T 2z, _+s& g(z)& g(Tz)) ds

+ } } } +|
g(T kz)+ } } } + g(Tz)+ g(z)&_

g(T k&1z)+ } } } + g(z)&_
f� (T kz, _+s& g(z)& g(Tz)

& } } } & g(T k&1z)) ds

in the above decomposition, it is to be recalled that t=&_+ g(Tz)+ } } } +
g(T k&1z)+ g(T kz). A change of variable yields

|
t

0
f� (Ss(z, _)) ds= :

&_+ g(Tz)+ } } } + g(T k&1z)+ g(T kz)�t
|

g(T kz)

0
f� (T kz, s$) ds$

(4.5)

Therefore, set

F(z$)=|
g(z$)

0
f� (z$, s$) ds$

to obtain

|
t

0
f� (S_(z, s)) ds= :

&_+ g(z)+ } } } + g(T k&1z)+ g(T kz)�t

F(T kz$)

The last expression induces the investigation of the terms of the form:

:
g(z)+ } } } + g(T k&1z)+ g(T kz)�t+s

F(T kz) (4.6)

In order to study these terms, we reformulate Eq. (4.3) in the following
form:
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|
O _|

g(z)

0
R \= |

t�=2

0
f� (S_(z, s)) ds+ L \= |

(t+{)�=2

(t+$)�=2
f� (S_(z, s)) ds+ d_& d&(z)

=|
O _|

g(z)

0
R \= :

g(z)+ } } } + g(T k&1z)+ g(T kz)�t�=2+s

F(T kz)+ :

L \= :
g(T k+lz)+ } } } + g(T k+l+mz)�(t+{)�=2+s

F(T l+kz)) ds& d&(z) (4.7)

With the above transformation, we can state the following proposition
which contains the key to the decorrelation property:

Proposition 4.1. Let St be the special flow defined by Eq. (3.2),
and two functions f, g: M � Rn. Let R and L be defined by Eq. (4.2). Then

|
O� _R \= |

t�=2

0
f (S_(z, s)) d_+ : L \= |

t2 �=2

t1 �=2
g(S_(z, s)) d_+& d&~ (z, s)

&|
O�

R \= |
t�=2

0
f (S_(z, s)) d_+ d&~ (z, s) :

|
O�

L \= |
t2 �=2

t1�=2
g(S_(z, s)) d_+ d&~ (z, s) � 0 (4.8)

as = � 0, for all 0<t<t1<t2 .

Proof. The proof of this proposition uses exactly the same ideas
introduced by Katznelson in ref. 10, but here we need a more precise
results, which will be proven below, and based on the decomposition of the
intervals [0, t1 �=2], [t1�=2, t2�=2] as in Eq. (4.4). Using Eq. (4.7) we have
reduced the problem to showing that

|
O _|

g(z)

0
R \= :

g(z)+ } } } + g(T k&1z)+ g(T kz)�t�=2+s

F(T kz)+ :

L \= :
s+t1 �=2<g(T k+lz)+ } } } + g(T k+l+mz)<t2 �=2+s

F(T k+lz)+ ds& d&(z, s)

&|
O
|

g(z)

0
R \= :

g(z)+ } } } + g(T k&1z)+ g(T kz)�t�=2+s

F(T kz)+ ds d&(z, s) :

|
O

L \= :
s+t1 �=2<g(T k+lz)+ } } } + g(T k+l+mz)�t2�=2+s

F(T k+lz)+ d&(z, s) � 0

(4.9)

as = � 0.
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Moreover, the right hand side of Eq. (4.9) can be expressed as

|
O
|

g(z)

0
As(z, Tz,..., T kz) Bs(T k+lz,..., T k+l+mz) d_ d&(z)

&|
O
|

g(z)

0
As(z, Tz,..., T kz) d_ d&(z)

_|
O

Bs(T k+lz,..., T k+l+mz) d&(z)=0 (4.10)

where we denote As and Bs by

As(z, Tz,..., T kz)=R \= :
g(z)+ } } } + g(T k&1z)+ g(T kz)�t�=2+s

F(T kz))

and

Bs(T k+lz,..., T k+l+mz)

=L \= :
s+t1 �=2<g(T k+lz)+ } } } + g(T k+l+mz)�t2 �=2+s

F(T k+lz)+ (4.11)

It is convenient now to introduce the following notation. We denote
by | } |� the supremum norm with respect to the canonical basis of Rn. If
f : (0, F) � (Rn, B(Rn)) is a measurable map, we define

& f &�=& f &L� :=inf[M>0 : +[x | f (x)|�>M ]=0]

and

1� p<�, & f &p=& f &L p(+)=|( | f | p) 1�p
�

We begin by establishing the following result:

Lemma 4.2. For s small enough, the quantities As and Bs defined
by Eqs. (4.11) are independent of s.

Proof. In order to prove this lemma, we shall prove that the error

:
g(z)+ } } } + g(T kz)�t�=2+s

F(T kz)& :
g(z)+ } } } + g(T kz)�t�=2

F(T kz)
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is dependent on epsilon. Multiplying the above expansion by = and
rewriting it in terms of Eq. (4.5), we get

= } \ :
g(z)+ } } } + g(T kz)�t�=2+s

F(T kz)& :
g(z)+ } } } + g(T kz)�t�=2

F(T kz)+
== |

t�=2

0 _ f (S_(z, s))& f (S_(z, 0))& d_ (4.12)

The right side of Eq. (4.12) then becomes

= |
t�=2

0 _ f (S_(z, s))& f (S_(z, 0))& d_

== |
t�=2

0 _ f (S_+s(z, 0))& f (S_(z, 0))& d_, 0�s<g(z) (4.13)

A change of variable leads to

= |
t�=2

0
f (S_(z, s)) d_== |

t�=2+s

s
f (S_(z, 0)) d_

Therefore

= |
t�=2

0
f (S_(z, s)) d_&= |

t�=2

0
f (S_(z, 0)) d_

== |
t�=2+s

t�=2
f (S_(z, s)) d_&= |

s

0
f (S_(z, 0)) d_ (4.15)

Taking the norm of Eq. (4.15) yields

} = |
t�=2+s

t�=2
f (S_(z, s)) d_&= |

s

0
f (S_(z, 0)) d_ }�2= } s } & f &L� (4.16)

with s<g(z) for s small enough.
Define

N=
t, z, s=[k | g(z)+ } } } + g(T kz)�t�=2+s]=[0, k =

Max(t, z, s)] & N

(4.17)

and examinate the expansion (4.12). For k=k=
Max(t, z, s)&k =

Max(t, z, 0), we
get after some calculations,
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:
g(z)+ } } } + g(T kz)�t�=2+s

F(T kz)& :
g(z)+ } } } + g(T kz)�t�=2

F(T kz)

= :

k=
Max

(t, z, s)

k=k =
Max(t, z, 0)+1

F(T kz)

where F(z$) is defined by Eq. (4.5). Thus we must investigate the following
three cases:

1st Case. Assume that z$=T kz is far away from 0. As g(z) :=ln z,
there exists a constant C such that,

[m | g(z)+ } } } + g(T mz)<t�=2]tCm

holds for m large enough.
Hence, g(z$)=g(T kz) exists and � g(T kz)

0 f� (T kz, s$) ds$<�. In other
words,

:
g(z)+ } } } + g(T kz)<t�=2+s

F(T kz)& :
g(z)+ } } } + g(T kz)<t�=2

F(T kz)=O(1)

(4.18)

2nd Case. Assume next that z$ is in the neighbourhood 0, i.e., the
case where g(0)=&�. In this case, if T kzt0, then ktkMax and
T k=

Max(t, z, s)zt0.

3nd Case. Finally, if k=
Max(t, z, s)<z$<k=

Max(t, z, 0), then g(T kz)t0.

In all cases, we get

:
g(z)+ } } } + g(T kz)<t�=2+s

F(T kz)& :
g(z)+ } } } + g(T kz)<t�=2

F(T kz)=O(1) (4.19)

Next, assume that R is a Lipschitz function having the Lipschitz con-
stant KR . Obviously

} |O�
R \= |

t�=2

0
f (S_(z, s)) d_) d&~ (z)

&|
O�

d&~ (z) R \= |
t�=2

0
f (S_(z, 0)) d_+ }

�|
O�

d&~ (z) KR } 2= & f &L� } s�KR & f &L� } = |
O

d&(z) |
g(z)

0
s ds

�KR & f &L� } = |
O

g2(z) d&(z)�=CKR & f &L� (4.20)
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which means that As and Bs are independent of s. Integrating Eq. (4.10)
with respect to s, we reduce

|
O

g(z) A(z, Tz,..., T kz) B(T k+lz,..., T k+l+mz) d&(z)

&|
O

g(z) A(z, Tz,..., T kz) d&(z) |
O

B(T k+lz,..., T k+l+mz) d&(z)=0

(4.21)

The proof of Lemma 4.2. is now complete. K

End of the Proof of Proposition 4.1. We are in a position to con-
clude the proof of Proposition 4.1. Introduce a partition P such that

Pk
0=P 6T &1P 6 } } } 6 T &kP and

Pk+l+m
k+l =T &k&lP 6 } } } 6 T &k&l&mP

and

(H3) :
E # P

inf
E

|ln &(E )|= :
E # P

1
&(E ) |

E
ln(&(E ))t

1
ln 2 |

1

0

ln z
1+z

dz

Let E and F be the finite decompositions of [0, 1[ into elements of Pk
0 and

Pk+l+m
k+l . Write A and B in the form

A(z, Tz,..., T kz)= :
E # P

k
0

A |E1E

(4.22)

B(T k+lz,..., T k+l+mz)= :
F # P k+l

k+l+m

B |F1F

First observe that, since + is ,-invariant

+(E & ,&nF )=+(1E } 1,&nF)

=+(1E } (1F b ,n))

=&(h;1E } (1F b ,n))

=*1(;)&n L;*
n&(h;1E } (1F b ,n))

=&(*1(;)&n L;
n(h;1E } (1F b ,n)))

=&(*1(;)&n L;
n(h;1E) } 1F)
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Using this fact,

|+(E & ,&nF )&+(E ) +(F )|=|+(E & ,&nF )&&(h;1E) &(h;1F)|

=|&(*1(;)&n L(0) n
; (h;1E } 1F))&&(h;1E) &(h;1F)|

=|&((*1(;)&n L (0) n
; (h;1E)&&(h;1E) h;) 1F)|

�&*1(;)&n L (0) n
; (h;1E)&&(h;1E) h;& &(F )

Hence, taking into account Corollary 3.3

&*1(;)&n L (0) n
; (h;1E)&&(h;1E) h;&�C+(E ) \n&s

where C is a constant and \ # ]0, 1[ is defined as in Lemma 3.2. Then

|+(E & ,&nF )&+(E ) +(F )|�C(inf h;)&1 +(E ) +(F ) \n&s (4.23)

for n�s. Thus +(E & ,&nF ) � +(E ) +(F ).
Now we examine the decorrelation property in terms of tensor-

products3 with the aid of (H3). Let f i be regular functions. Then Eq. (4.21)
can be replaced by

2( fi )=| f0(z) } } } fk(T kz) fk+l (T k+lz) } } } fk+l+m(T k+l+mz) d&(z)

&| f0(z) } } } fk(T kz) d&(z)

_| fk+l (T k+lz) } } } fk+l+m(T k+l+mz) d&(z) (4.24)

Define

Osc( fi | E)= sup
z, z$ # E

| fi (z)& f i (z$)|

and let P be the partition (H3) such that, for '>0,

sup
i

E # P

Osc( fi |E)<' (4.25)
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Replacing fi by

f� i= :
E # P

1
&(E ) |

E
f i d& } 1E (4.26)

we will estimate

|2( fi )&2( f� i )|+|2( f� i )| (4.27)

Firstly, using Eq. (4.23),

|2( f� i )|= } | f� 0(z) } } } f� k(T kz) f� k+l (T k+lz) } } } f� k+l+m(T k+l+mz) d&(z)

&| f� 0(z) } } } f� k(T kz) d&(z)

_| f� k+l (T k+lz) } } } f� k+l+m(T k+l+mz) d&(z) }
�C\l :

E # P
k
0

F # P k+l
k+l+m

`
k

i=0

f� i |E `
k+l+m

i=k+l

f� i |F &(E ) &(F )

=C\l | f� 0(z) } } } f� k+l (T k+lz) } } } f� k+l+m(T k+l+mz) d&(z) (4.28)

where \#q; is defined as in Corollary 3.3 and the f� i are measurable func-
tions. Equation (4.28) allows us to have L1-control on f� i instead L�. On
the other hand, it is not hard to see that

|2( fi )&2( f� i )|� } | f0(z) } } } fk(T kz) fk+l (T k+lz) } } } fk+l+m(T k+l+mz) d&(z)

&| f� 0(z) } } } f� k+l (T k+lz) } } } f� k+l+m(T k+l+mz) d&(z) }
+ } | f0(z) } } } fk(T kz) d&(z)

_| fk+l (T k+lz) } } } fk+l+m(T k+l+mz) d&(z)

&| f� 0(z) } } } f� k(T kz) d&(z)

_| f� k+l (T k+lz) } } } f� k+l+m(T k+l+mz) d&(z)}
=I1+I2 (4.29)
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Note that

I1� } | ( f0&f� 0) f1 d&(z)+| ( f1&f� 1) f2 d&(z)+ } } } }
+ } | f� 0( f1&f� 1) d&(z) }+ } | f� 1( f2&f� 2) d&(z) }+ } } } (4.30)

From this, since

} | ( f0& f� 0) d&(z) }�& f0& f� 0&L1 (4.31)

we get

} | f� 0( f1& f� 1) d&(z) }+ } | f� 0( f1& f� 1) d&(z) }+ } | f� 1( f2& f� 2) d&(z) }+ } } }

�& f� 0&L1 & f1& f� 1&L�+ } } } (4.32)

Hence

} | f0(z) } } } fk(T kz) fk+l (T k+lz) } } } fk+l+m(T k+l+mz) d&(z)

&| f� 0(z) } } } f� k+l (T k+lz) } } } f� k+l+m(T k+l+mz) d&(z) }
�C1 & f0& f� 0&L1+C2 & f� 0&L1 & f1& f� 1&L� } } } & fk+l+m& f� k+l+m&L�

(4.33)

Naturally, we have the estimate on the term I2 by the same ansatz. Now,
using Corollary 3.3 yields

} |O

g(z) A(z, Tz,..., T kzB(T k+lz,..., T k+l+mz) d&(z)

&|
O

g(z) A(z, Tz,..., T kz) d&(z) |
O

B(T k+lz,..., T k+l+mz) d&(z) }
�C0 \l | f� 0(z) } } } f� k+l (T k+lz) } } } f� k+l+m(T k+l+mz) d&(z) } &(E ) &(F )

+C1 & f0& f� 0&L1+C2 & f0& f� 0&L1 & f1& f� 1&L� } } } & fk+l+m& f� k+l+m&L�

(4.34)
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where C0 , C1 ,... denote some constants. To complete, the proof summing
over E # Pk

0 and F # Pk+l+m
k+l , inserting this result and Eq. (4.28) into

Eq. (4.27) yields

} |O
|

g(z)

0
As(z, Tz,..., T kz) Bs(T k+lz,..., T k+l+mz) d_ d&(z)

&|
O
|

g(z)

0
As(z, Tz,..., T kz) d&(z) |

O

Bs(T k+lz,..., T k+l+mz) ds d&(z) }
�C0 \l & f� 0&L1 & f� 1&L� } } } & f� k+l+m&L�+C1 & f0& f� 0&L1

+C2 & f0& f� 0&L1 & f1& f� 1&L� } } } & fk+l+m& f� k+l+m&L� (4.35)

To summarize, we have used Eq. (4.25) which interprets the smallness of
the oscillation (4.25) and we replace the suspension g(z) by f0 which we
have assumed only integrable. The proof of Proposition 4.1. is now com-
plete. K

Decorrelation in Eq. (2.13). Observe that since the treatment of
the linear term is simpler (but follows the same lines) than the treatment
of the quadratic term, only this last one, will be considered in details. The
key idea to prove decorrelation in this term is to introduce a positive
``small'' time $, or alternatively some integer k$ in Eq. (4.10). We start with

�{2
x , \x+= |

t�=2

0
f (Ys) ds+ : \= |

(t+{)�=2

t�=2
f (Ys) ds+

�2

�
&�{2

x , \x+= |
t�=2

0
f (Ys) ds+ : \= |

(t+{)�=2

(t+$)�=2
f (Ys) ds+

�2

�
=�{2

x, \x+= |
t�=2

0
f (Ys) ds+ : \2= |

(t+$)�=2

t�=2
f (Ys) ds 6 = |

(t+{)�=2

(t+$)�=2
f (Ys) ds+

+\= |
(t+$)�=2

t�=2
f (Ys) ds+

�2

� (4.36)

where we denote

a 6 b= 1
2 (a�b+b�a)

Now, observe that

"= |
(t+$)�=2

t�=2
f (Ys) ds"L2

="= |
$�=2

0
f (Ys) ds"L2

=O(- $ ) (4.37)
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Using Cauchy�Schwartz's inequality in Eq. (4.36), we obtain

}�{2
x, \x+= |

t�=2

0
f (Ys) ds+ : \= |

(t+{)�=2

t�=2
f (Ys) ds+

�2

�
&�{2

x, \x+= |
t�=2

0
f (Ys) ds+ : \= |

(t+{)�=2

(t+$)�=2
f (Ys) ds+

�2

�}
��}{2

x, \x+|
t�=2

0
f (Ys) ds) } } = |

(t+$)�=2

t�=2
f (Ys) ds }

2

�
+2 �}{2

x, \x+|
t�=2

0
f (Ys) ds+ }

_} = |
(t+$)�=2

t�=2
f (Ys) ds }

2

} = |
(t+{)�=2

(t+$)�=2
f (Ys) ds }

2

� (4.38)

The first term of Eq. (4.38), with T=t�=2 is bounded by

&{2
x ,&� } = |

(t+$)�=2

t�=2
f (Ys) ds }

2

2

�&{2
x,&� sup

T " 1

- T |
T

0
f (Ys) ds"

2

4

(2 - 2$ +$+=2)

and the second term is bounded by

&{2
x,&� sup

T " 1

- T |
T

0
f (Ys) ds"

2

4

(2 - 2$ +$+2=2)

Step 2. Estimate of the remainder. We have

r=, {, t :=�}\= |
(t+{)�=2

t�=2
f (Ys) ds+ }

3

�
��}\= |

(t+{)�=2

0
f (Ys) ds+ }

3

�+O(=3) (4.39)

or using Ho� lder's inequality with T={�=2 leads to

r=, {, t�C(=- T )3 \|O }
1

- T |
T

0
f (Ys) ds }

4

d&(z)+
3�4

+O(=3) (4.40)
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Hence, letting = � 0 yields

lim sup
= � 0

sup
t # R+ �}\= |

(t+{)�=2

t�=2
f (Ys) ds+ }

3

�=O({)1�2 (4.41)

Step 3. We begin with

�{2
x, \x+= |

t�=2

0
f (Ys) ds+ : \= |

(t+{)�=2

(t+$)�=2
f (Ys) ds+

�2

�
=|

O

d&(z) |
g(z)

0
As(z, Tz,..., T k) Bs(T k$+lz,..., T k+l+mz) ds

=|
O

g(z) A(z, Tz,..., T k) d&(z) B(T k$+lz,..., T k+l+mz) d&(z) (4.42)

Observe that

|
O

g(z) A(z, Tz,..., T k) d&(z)&|
O
|

g(z)

0
As(z, Tz,..., T k) d&~ (z, s) (4.43)

and similarly

|
O

Bs(T k$+lz,..., T k+l+mz) d&(z)&|
O

B(z, Tz,..., T mz) d&(z) (4.44)

by the invariance of the transformation T. It now follows that

�{2
x , \x+= |

t�=2

0
f (Ys) ds+ : \= |

(t+{)�=2

(t+$)�=2
f (Ys) ds+

�2

�
&|

O
|

g(z)

0
A(z, Tz,..., T k) d&~ (z, s) |

O

B(z, Tz,..., T mz) d&(z) (4.45)

= 1
2{ }2: {2

x(.=(t, x)) (4.46)

Step 4. Taking the Limit. (a) Uniform Compactness Result.
The following lemma will be important in what follows.

Lemma 4.3. Assume that , is a function of class C 3
b(Rn) and

f : M � Rn be an integrable function such that, supT &(1�- T )
�T

0 f (Ys) ds&L1<+�. Denote by u= the family of function (�=(t, x, } )).
Then
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(a) (u=)=>0 is uniformly bounded in C 0, 3
b (R+_Rn);

(b) there exists a constant C>0 such that, for all =>0, t # R+, { # R
with t+{�0, and k=0, 1, 2, and x # Rn, we have |{k

xu=(t+{, x)&
{k

xu=(t, x)|��C - |{|;

(c) (u=)=>0 is relatively compact in C 0, 2
b ([0, {]_X ), for {>0, and

for any compact X in Rn.

Proof. Proof of (a). For k # Nn such that |k|�3, we have
supt supx |Dk

xu=(t, x)|�&Dk,&� .

Proof of (b). Let {>0 and k=0, 1, 2. By the dominated convergence
theorem, we have

|{k
xu=(t+{, x)&{k

xu=(t, x)|��n &{k+1,&� "= |
(t+{)�=2

t�=2
f (Ys) ds"L1

�n &{k+1,&� - { sup
T " 1

- T |
T

0
f (Ys) ds"L1

�C - {

Proof of (c). The last part of this lemma is obtained by using the two
arguments above and applying the Ascoli's theorem.

(b) Weak Limit. The family (u=)=>0 is uniformly bounded in
L�(R+_Rn) by &,&L� . By the Banach�Alaoglu theorem, the family u= is
relatively weakly*-compact in L�(R+_Rn)=(L1(R+_Rn))$. Let u be a
limit point of this family and rename as usual, ,= , �= and u= the corre-
sponding subfamilies, with u= converging to u. We have for any function /
integrable on R+_Rn,

lim
= � 0 |

R+_Rn
u=(t, x) /(t, x) dt dx=|

R+_Rn
u(t, x) /(t, x) dt dx

This holds in particular for a function / belonging to C�
K . Hence, for any

/ # C�
K , we define for all =>0 and {>0 the quantity

0=, {(/) :=�u=( }+{, } )&u=( } , } )
{

, /�
=|

R +_Rn

u=( }+{, } )&u=( } , } )
{

/(t, x) dt dx

=|
R+_Rn

u=(t, x)
/(t&{, x)&/(t, x)

{
dt dx
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Since (/( }&{, x)&/( } , })�{) # C�
K (R+_Rn), for all {>0, lim= � 0 0=, { exists

and is equal to

0{(/)=|
R+_Rn

u(t, x)
/(t&{, x)&/(t, x)

{
dt dx

Now letting { � 0, yields

0(/) := lim
{ � 0

0{(/)=&|
R+_Rn

u(t, x)
d
dt

/(t, x) dt dx

=|
R +_R n

d
dt

u(t, x) /(t, x) dt dx

Starting with Eq. (2.13), using Proposition 4.1, the first term of the
right hand side of Eq. (2.13) tends to 0 as = � 0. On the other hand,

lim
= � 0 _ 1

2 �{2
x, \x+= |

t�=2

0
f (Ys) ds+ : \= |

(t+{)�=2

t�=2
f (Ys) ds+

} 2

�
& 1

2 �{2
x, \x+= |

t�=2

0
f (Ys) ds)� : �\= |

(t+{)�=2

t�=2
f (Ys) ds+

} 2

�&=0

By the dominated convergence Theorem, it is not hard to see that
u= # C2(Rn); since {2, is bounded, {2

xu=(t, x)=({2
x�=(t, x, } )) . Hence, for

any function / # C�
K , we have

0=, {(/)=
1
2 �{2

xu= : �\ =

- { |
{�=2

0
f (Ys( y) ds+

} 2

�+r=, {, t , /�
Thus

lim sup
= � 0 }0=, {(/)&|

R +_R n
{2

xu=(t, x) : 1
2}2({�=2) /(t, x) dt dx }

�lim sup
= � 0

|
R +_Rn

|r=, {, } } /(t, x)| dt dx

�lim sup
= � 0

sup
t

|r=, {, } | } &/&L1(R+_R n)

�O({)1�2
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Moreover, since / # C�
K , taking into account Eq. (4.46), yields

|
R+_R n

/(t, x)
(u(t+{, x)&u(t, x)

{
dt dx

=|
R+_Rn \1

2
}2 : {2

xu(t, x)+ /(t, x) dt dx+O({)1�2

Next, taking the limit as { � 0 to get rid of the term of O({)1�2; we deduce
that u is a solution of the initial value problem for the diffusion equation

du
dt

=
1
2

}2 : {2
xu, u(0, x)=,(x)

The solution of the Cauchy problem defined in the Theorem 2.1 is uniquely
defined and therefore not only a subsequence, but the complete family

(.=(t, x, y)) or u=(t, x)=(�=(t, x, y))=�, \x+= |
t�=2

0
f (Ys( y)) ds+�

converges in C0([0, {], w*&L�(R+_Rn)) to u(t, x).
We now complete the proof of Theorem 2.1. We shall now prove that

the limit points correspond to the functions of class C1, 2(R+_Rn). In
order to do so, we consider a limit point u of (u=)=>0 in C0, 2(R+_Rn) and
for the weak topology on L�. In the sense of distributions, we have:

d
dt

u=
1
2

}2 : {2
xu(t, x)

We deduce that the distribution (d�dt) u corresponds to a continuous
function w on R+_Rn. Let v be the function defined by

v(t, x)=,(x)+|
t

0
w(s, x) ds

Note that v # C1, 0(R+_Rn). Put 1 :=[h$; h # C�
K (R+)]. It is not hard to

see that, for any g # 1, and x # Rn,

|
+�

0
(u&v)(t, x) g(t) dt=0
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and that 1=[g # C�
K (R+) : �R g(t) dt=0]. Let ,0 be a function defined in

C�
K (R+) such that �R ,0(t) dt=1. Then, for any function f in C�

K (R+), the
function f &,0 �+�

0 ,0(s) ds belongs to 1, and so for any x # Rn, we have

|
+�

0
(u&v)(t, x) f (t) dt=|

+�

0
(u&v)(t, x) ,0(t) dt |

+�

0
f (s) ds

Using the continuity of the function z :=(u&v), we finally get

z(t, x)=|
+�

0
(u&v)(t, x) ,0(t) dt=z(0, x)=0

Hence, we deduce that u coincide with v. Thus, the limit points for uniform
convergence on any compact [0, {]_X and the weak* convergence on
L�(R+_Rn) are the solutions u of class C1, 2 of the heat equation (2.11),
with the initial data u(0, } )#,. The existence and uniqueness of such a
solution is a classical result (uniqueness is given by the Maximum principle).
The proof of Theorem 2.1 is now complete. K

APPENDIX

It is illuminating to see how the eigenvalues of P-F operator allows us
to obtain Kuzmin's theorem in Section III. An essential point was that, to
find an appropriate setting for a formulation of Kuzmin's theorem, we need
to investigate the P-F operator L (0)

; which possess a dominant eigenvalue
*1 and a subdominant eigenvalue *2 satisfying |*1 |>|*2 |. This can be
stated as

Lemma 5.1. The operator L (0)
; : E�(D) � E�(D) defined by

Eq. (3.4) (with s=0) has a simple positive dominant eigenvalue *1=1 and
a simple negative subdominant eigenvalue *2 with |*i |<&*2<*1=1 for
all i�3.

Proof. The proof is the same as in ref. 12; for sake of completeness
we present the proof in detail. It will be convenient to introduce the follow-
ing notation:

ER
1, �(D) the real subspace of E1, �(D) of all f that takes real values on

DR=R & D;

E� =
1, �(D)=[ f # E1, � : �1

0 f (x) dx=0]; E =
1, �(D)=[ f� # E1, � : �1

0 f� (x)
h1(x) dx=0].
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E=, R
1, �(D) is the real subspace of all f� # E =, R

1, �(D) which take real values
on DR , and in this space the cone C is defined as C=[ f� # E =, R

1, �(D) : f� $�0
on DR].

Next set V: E1, �(D) � E1, �(D), Vf (z)=��
n=1 (z+1)�((z+n)(z+n

+1)) f (1�(z+n)).

The problem is to determine the eigenvalue *2 . It can be obtained by
the minimax principle. We have:

min
f� # C1

max
x # D� R

(Vf� )$ (x)

f� $(x)
=*2=max

f� # C1
min
x # D� R

(Vf� )$ (x)

f� $(x)
(5.1)

From this we get rigorous upper and lower bounds for the eigenvalues *2 :

min
x # D� R

(Vf� )$ (x)

f� $(x)
�*2�max

x # D� R

(Vf� )$ (x)

f� $(x)
(5.2)

where f� is any element in the interior C1 of the cone C. The above minimax
principle should to be compared with a completely analogous one for the
highest eigenvalue *1 of the operator L (0)

; :

max
f� # K1 +

min
x # D� R

L (0)
; f (x)

f (x)
=*1= min

f� # K1 +

max
x # D� R

L (0)
; f (x)

f (x)
(5.3)

K+ is the cone K+=[ f # E R
1, �(D) : f (x)�0 on DR] in the real Banach

space E R
1, �(D). However as �1

0 L (0)
; f (x) dx=�1

0 f (x) dx, this formula is not
interesting, *1 must be 1 anyhow. This gives for instance `[2; 7

2]�*1�
`[2, 1

2] where `(z, q)=��
i=0 1�(q+i)z is the Hurwitz function. The proof of

lemma is complete now. K
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